拓撲的種類。

拓撲學的英文名是Topology,直譯是地志學,也就是和研究地形、地貌相類似的有關學科。我國早期曾經翻譯成“形勢幾何學”、“連續幾何學”、“一對一的連續變換群下的幾何學”,但是,這幾種譯名都不大好理解,1956年統一的《數學名詞》把它確定為拓撲學,這是按音譯過來的。

拓撲學是幾何學的一個分支,但是這種幾何學又和通常的平面幾何、立體幾何不同。通常的平面幾何或立體幾何研究的物件是點、線、面之間的位置關係以及它們的度量性質。拓撲學對於研究物件的長短、大小、面積、體積等度量性質和數量關係都無關。

舉例來說,在通常的平面幾何裡,把平面上的一個圖形搬到另一個圖形上,如果完全重合,那麼這兩個圖形叫做全等形。但是,在拓撲學裡所研究的圖形,在運動中無論它的大小或者形狀都發生變化。在拓撲學裡沒有不能彎曲的元素,每一個圖形的大小、形狀都可以改變。例如,前面講的歐拉在解決哥尼斯堡七橋問題的時候,他畫的圖形就不考慮它的大小、形狀,僅考慮點和線的個數。這些就是拓撲學思考問題的出發點。

拓撲性質有那些呢?首先我們介紹拓撲等價,這是比較容易理解的一個拓撲性質。

在拓撲學裡不討論兩個圖形全等的概念,但是討論拓撲等價的概念。比如,儘管圓和方形、三角形的形狀、大小不同,在拓撲變換下,它們都是等價圖形。左圖的三樣東西就是拓撲等價的,換句話講,就是從拓撲學的角度看,它們是完全一樣的。

在一個球面上任選一些點用不相交的線把它們連接起來,這樣球面就被這些線分成許多塊。在拓撲變換下,點、線、塊的數目仍和原來的數目一樣,這就是拓撲等價。一般地說,對於任意形狀的閉曲面,只要不把曲面撕裂或割破,他的變換就是拓撲變幻,就存在拓撲等價。

應該指出,環面不具有這個性質。比如像左圖那樣,把環面切開,它不至於分成許多塊,只是變成一個彎曲的圓桶形,對於這種情況,我們就說球面不能拓撲的變成環面。所以球面和環面在拓撲學中是不同的曲面。

直線上的點和線的結合關係、順序關係,在拓撲變換下不變,這是拓撲性質。在拓撲學中曲線和曲面的閉合性質也是拓撲性質。

我們通常講的平面、曲面通常有兩個面,就像一張紙有兩個面一樣。但德國數學家莫比烏斯(1790∼1868)在1858年發現了莫比烏斯曲面。這種曲面就不能用不同的顏色來塗滿兩個側面。

拓撲變換的不變性、不變數還有很多,這裡不在介紹。

拓撲學建立後,由於其它數學學科的發展需要,它也得到了迅速的發展。特別是黎曼創立黎曼幾何以後,他把拓撲學概念作為分析函數論的基礎,更加促進了拓撲學的進展。

二十世紀以來,集合論被引進了拓撲學,為拓撲學開拓了新的面貌。拓撲學的研究就變成了關於任意點集的對應的概念。拓撲學中一些需要精確化描述的問題都可以應用集合來論述。

因為大量自然現象具有連續性,所以拓撲學具有廣泛聯繫各種實際事物的可能性。通過拓撲學的研究,可以闡明空間的集合結構,從而掌握空間之間的函數關係。本世紀三十年代以後,數學家對拓撲學的研究更加深入,提出了許多全新的概念。比如,一致性結構概念、抽象距概念和近似空間概念等等。有一門數學分支叫做微分幾何,是用微分工具來研究取線、曲面等在一點附近的彎曲情況,而拓撲學是研究曲面的全域聯繫的情況,因此,這兩門學科應該存在某種本質的聯繫。1945年,美籍中國數學家陳省身建立了代數拓撲和微分幾何的聯繫,並推進了整體幾何學的發展。

拓撲學發展到今天,在理論上已經十分明顯分成了兩個分支。一個分支是偏重於用分析的方法來研究的,叫做點集拓撲學,或者叫做分析拓撲學。另一個分支是偏重於用代數方法來研究的,叫做代數拓撲。現在,這兩個分支又有統一的趨勢。
拓撲學在泛函分析、李群論、微分幾何、微分方程額其他許多數學分支中都有廣泛的應用。
其它數學分支學科
算術、初等代數、高等代數、數論、歐式幾何、非歐幾何、解析幾何、微分幾何、代數幾何學、射影幾何學、拓撲學、分形幾何、微積分學、實變函數論、概率和數理統計、複變函數論、泛函分析、偏微分方程、常微分方程、數理邏輯、模糊數學、運籌學、計算數學、突變理論、數學物理學。



網路拓撲描述了線纜和網路設備的佈局以及資料傳輸時所採用的路徑。網路拓撲很大程度的影響網路如何工作。網路拓撲包括物理拓撲和邏輯拓撲。

更多文章